Preprints:

Kalutskii M, Grubmueller H,  Volkov VA#, Igaev M#. Microtubule dynamics are defined by conformations and stability of clustered protofilaments (2024) bioRxiv doi: 10.1101/2024.11.04.621893

Liang R, Torres-Flores AP, Qi S, Khursheed A, Tian Y, Szwedziak P, Baker MD, Volkov VA, Darbari VC, Viles JH. Structural architecture of amyloid-β oligomers, curvilinear protofibrils and annular assemblies, imaged by cryo-EM and cryo-ET (2024) bioRxiv doi: 10.1101/2024.03.01.582902

Amini Hounejani R, Volkov VA & Dogterom M. Dynamic instability of force-generating bacterial microtubules (2023) bioRxiv doi: 10.1101/2023.08.02.551647

Ogunmolu FE*, Moradi S*, Volkov VA*, et al. Microtubule plus-end regulation by centriolar cap proteins (2021) bioRxiv doi: 10.1101/2021.12.29.474442

Peer-reviewed publications:

Volkov VA# & Akhmanova A#. Phase separation on microtubules: from droplet formation to cellular function? (2023) Trends in Cell Biology, in press; doi: 10.1016/j.tcb.2023.06.004 / PDF

Polley S, Müschenborn H, Terbeck M, De Antoni A, Vetter IR, Dogterom M, Musacchio A#, Volkov VA#, Huis in ‘t Veld PJ#. Stable kinetochore-microtubule attachment requires loop-dependent Ndc80-Ndc80 binding (2023) EMBO J e112504. doi: 10.15252/embj.2022112504 / PDF
Nick Maleki A, Huis in 't Veld PJ, Akhmanova A, Dogterom M, Volkov VA#. Estimation of microtubule-generated forces using a DNA origami nanospring (2023) J Cell Sci 136 (5), jcs260154. doi: 10.1242/jcs.260154 / PDF
Maan R*, Reese L*, Volkov VA*, King MR, van der Sluis E, Andrea N, Evers W, Jakobi AJ, Dogterom M. Multivalent interactions facilitate motor-dependent protein accumulation at growing microtubule plus ends (2023) Nature Cell Biology 25, 68–78; doi: 10.1038/s41556-022-01037-0 / PDF

van den Berg CM, Volkov VA, Schnorrenberg S, Huang Z, Stecker KE, Grigoriev I, Gilani S, Frikstad KM, Patzke S, Zimmermann T, Dogterom M, Akhmanova A. CSPP1 stabilizes growing microtubule ends and damaged lattices from the luminal side (2023) J Cell Biol 222(4):e202208062. doi: 10.1083/jcb.202208062 / PDF
#corresponding author, *equal contribution

Before 2022 / postdoc publications:

Alkemade C, Wierenga H, Volkov VA, Preciado López M, Akhmanova A, Ten Wolde PR, Dogterom M, Koenderink GH. Cross-linkers at growing microtubule ends generate forces that drive actin transport (2022) PNAS  119(11):e2112799119. doi: 10.1073/pnas.2112799119 / PDF

Schwietert F, Volkov VA, Huis in 't Veld PJ, Dogterom M, Musacchio A, Kierfeld J. Strain stiffening of the Ndc80 complex attached to microtubule plus ends (2022) Biophys J 121(21) 4048-4062. doi: 10.1016/j.bpj.2022.09.039 / PDF

Volkov VA#. Microtubules pull the strings: disordered sequences as efficient couplers of microtubule-generated force (2020) Essays in Biochemistry 64(2), 371–382. doi: 10.1042/EBC20190078 / PDF

Rodriguez-Garcia R, Volkov VA, Chen CY, Katrukha EA, Olieric N, Aher A, Grigoriev I, López MP, Steinmetz MO, Kapitein LC, Koenderink G, Dogterom M, Akhmanova A. Mechanisms of motor-independent membrane
remodeling driven by dynamic microtubules (2020) Current Biology 30(6), 972–987. doi: 10.1016/j.cub.2020.01.036 / PDF

Huis in ’t Veld PJ*, Volkov VA*, Stender I, Musacchio A, Dogterom M. Molecular determinants of the Ska-Ndc80 interaction and their influence on microtubule tracking and force-coupling (2019) eLife 8:e49539 doi: 10.7554/eLife.49539 / PDF

McHugh T, Zou J, Volkov VA, Bertin A, Talapatra SK, Rappsilber J, Dogterom M, Welburn JPI. The depolymerase activity of MCAK shows graded response to Aurora B kinase phosphorylation through allosteric regulation (2019) J Cell Sci 132(4): jcs228353. doi: 10.1242/jcs.228353 / PDF

Volkov VA*, Huis in ’t Veld PJ*, Dogterom M, Musacchio A. Multivalency of NDC80 in the outer kinetochore is essential to track shortening microtubules and generate forces (2018) eLife 7:e36764. doi: 10.7554/eLife.36764 / PDF

Publications from the Volkov lab in Moscow:

Kanfer G, Peterka M, Arzhanik VK, Drobyshev AL, Ataullakhanov FI, Volkov VA#, Kornmann B#. CENP-F couples cargo to growing and shortening microtubule ends (2017) Mol Biol Cell 28:2343-2459. doi: 10.1091/mbc.e16-11-0756 / PDF

Volkov VA, Grissom PM, Arzhanik VK, Zaytsev AV, Renganathan K, McClure-Begley T, Old WM, Ahn N, McIntosh JR. Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules (2015) J Cell Biol 209(6):813-28. doi: 10.1083/jcb.201408083 / PDF

Volkov VA, Zaytsev AV, Gudimchuk N, Grissom PM, Gintsburg AL, Ataullakhanov FI, McIntosh JR, Grishchuk EL. Long tethers provide high-force coupling of the Dam1 ring to shortening microtubules (2013) PNAS 110(19):7708-13. doi: 10.1073/pnas.1305821110 / PDF

Volkov VA, Zaytsev AV, Grishchuk EL. Preparation of segmented microtubules to study motions driven by the disassembling microtubule ends (2014) J of Vis Exp (JoVE) e51150. doi: 10.3791/51150

PhD publications:

McIntosh JR, Volkov V, Ataullakhanov FI, Grishchuk EL. Tubulin depolymerization may be an ancient biological motor (2010) J Cell Sci 123 (20), 3425-3434. doi: 10.1242/jcs.067611 / PDF

McIntosh JR, Grishchuk EL, Morphew MK, Efremov AK, Zhudenkov K, Volkov VA, Cheeseman IM, Desai A, Mastronarde DN, Ataullakhanov FI. Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion (2008) Cell 135(2):322-33. doi: 10.1016/j.cell.2008.08.038 / PDF 

Grishchuk EL, Efremov AK, Volkov VA, Spiridonov IS, Gudimchuk N, Westermann S, Drubin D, Barnes G, McIntosh JR, Ataullakhanov FI. The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion (2008) PNAS 105(40):15423-8. doi: 10.1073/pnas.0807859105 / PDF

Grishchuk EL, Spiridonov IS, Volkov VA, Efremov A, Westermann S, Drubin D, Barnes G, Ataullakhanov FI, McIntosh JR. Different assemblies of the DAM1 complex follow shortening microtubules by distinct mechanisms (2008) PNAS 105(19):6918-23. doi: 10.1073/pnas.0801811105 / PDF

Korendyaseva TK, Kuvatov DN, Volkov VA, Martinov MV, Vitvitsky VM, Banerjee R, Ataullakhanov FI. An allosteric mechanism for switching between parallel tracks in mammalian sulfur metabolism (2008) PLoS Comput Biol 4(5):e1000076. doi: 10.1371/journal.pcbi.1000076 / PDF